
HOUR OF CODE:
AN

Introduction to R

Dr. Michel d. S. Mesquita

Dr. Vidyunmala Veldore
Dr. Morgan Yarker

m2lab.org and Yarker Consulting

© 2015 All Rights Reserved

Contents

Welcome iii

1 Arithmetics in R 1
1.1 Getting started . 1
1.2 First encounter with R . 2
1.3 Matrix and Array Manipulation . 5

2 Reading data in R 7
2.1 Getting started . 7
2.2 Introduction . 8
2.3 How to install, load and unload packages in R . 8
2.4 Opening text datasets in R . 9

3 Plotting in R 11
3.1 Getting started . 11
3.2 Introduction . 12
3.3 Line, Scatter, and Histogram in R . 12

4 Statistics in R 15
4.1 Getting started . 15
4.2 Introduction . 15
4.3 First look at our data . 16
4.4 Correlation . 17
4.5 Linear trends . 17

5 (Optional) More activities to try 19
5.1 Introduction . 19
5.2 Working with NetCDF datasets . 19
5.3 Autocorrelation . 21
5.4 Creating maps in R . 21
5.5 Creating maps with Google Maps in R . 22

i

Welcome

Welcome to ’HOUR OF CODE - An Introduction to R’ ! This course has been prepared by Dr.
Michel Mesquita1, Dr. Vidyunmala Veldore2 and Dr. Morgan Yarker3.

The materials in this booklet are designed to be used in conjunction with our free online
course (with the same title) on m2lab.org. You will benefit more fully by joining this online
course. For information on downloading and installing R, please refer to Tutorial 0 in the online
course.

Also, feel free to ask us any questions along the way. You will find a link on the course
website, where you can post your questions.

We hope you enjoy our course!

1Uni Research Climate and Bjerknes Centre for Climate Research, Norway - mmeclimate@gmail.com
2Det Norske Veritas, Norway - vidyainteri@gmail.com
3Yarker Consulting, USA - morgan@yarkerconsulting.com

iii

mailto:mmeclimate@gmail.com
mailto:vidyainteri@gmail.com
mailto:morgan@yarkerconsulting.com

Chapter 1

Arithmetics in R

Welcome to the first tutorial of R. In this section we will try to use the R as a programing
language and learn the simple operations that could be done be easily with few commands in
R- programming environment. R is a interactive tool and has a vast helpline resources. In order
to work in R we can use a terminal application (e.g.: Terminal in Linux or Mac), or using the
R-console graphical interface or RStudio (Linux, Windows or Mac computers).

1.1 Getting started

This tutorial includes the following R commands (taken from the R Cheat Sheet1):

• Various basic arithmetic functions (+, -, etc.)

• log(x, base) computes the logarithm of x with base base

• Re(x) real part of a complex number

• Im(x) imaginary part of a complex number

• c(...) generic function to combine arguments with the default forming a vector; with
recursive = TRUE descends through lists combining all elements into one vector

• length(x) number of elements in x

• mean(x) mean of the elements of x

• var(x) or cov(x) variance of the elements of x; if x is a matrix or a data frame, the
variance-covariance matrix is calculated

• matrix(x,nrow=,ncol=) matrix; elements of x recycle

For more information about commands in R, please refer to the ”Cheat sheet” and ”Intro-
duction to R”2 provided for you in Tutorial 0 online.

1 https://cran.r-project.org/doc/contrib/Short-refcard.pdf
2https://www.stat.berkeley.edu/~spector/R.pdf

1

https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://www.stat.berkeley.edu/~spector/R.pdf

1.2 First encounter with R

If you have not installed R yet, please refer to our Tutorial 0, where you will get more information
on how to do that. If you have installed it, then let’s get started by opening R (R-console or
RStudio). If you prefer to use a Terminal window (in Linux or Mac), then just type R.

When you open R, you might have the following information showing on the R console:

Terminal application
vidyunmala:Mcbook: /Bayesian-Course $ R

R version 2.13.1 (2011-07-08)
Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0
Platform: x86 64-apple-darwin9.8.0/x86 64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions. Type ’license()’ or ’licence()’
for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type ’contributors()’ for more
information and ’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or ’help.start()’ for an HTML
browser interface to help. Type ’q()’ to quit R.

>

Note here that the > sign is called the R-prompt. It indicates that we are ready to type
any commands we want to. So, let us start with a few (simple) summation, multiplication,
division and power operations, so that you can see how R can be used as a calculator.

Let’s type the following command (note that > is the R-prompt, so you should not type it):

> 8+20

You will find that R will give you the result 28, just as you might find in a calculator. We
can also try to calculate different powers, for instance, the square of a number (e.g. 3442). You
would type this in R as follows:

> 344^2

Division is very simple to perform in R (e.g.: 289
4),

> 289/4

Multiplication is done through the asterisk symbol (e.g.: 3 × 456),

> 3*456

You can also combine the above operations in more complex ones. In this case you would use

parentheses to separate them. For instance, to calculate the following expression

(
(8×2987)×4

34
√
678

)3

,

you would type,

> ((8*2)*4)/(34*sqrt(678))^3

Here are examples of other operations you can make in R:

Natural log of base e

> log(10)

Base 10 logs; log(100,base=10) is the same

> log10(100)

Square root of a value

> sqrt(100)

Factorial

> factorial(5)

Absolute value

> abs(19/-5)

Real part of a complex number

> Re(2+3i)

Imaginary part of a complex number

> Im(2+3i)

R has several other functions and operations you can use (e.g.: trigonometric functions,
solving differential equations, etc.). It is indeed a very powerful software. Also, R provides
some useful help for its commands and functions. Fo example, if you want to find out how the
standard deviation function works (sd function in R), you can type:

help(sd)

We highly recommend you to go through the Cheat Sheet, provided in the course, so that
you can familiarise yourself with the amount of operations you can perform in R.

1.3 Matrix and Array Manipulation

R can also be used to create sequences and matrices and perform operations on these matrices.
This is shown in the box below.

The first and foremost part in creating an array or a matrix is to assign the array to a
variable name. For example, if we are working with a variable called temperature at 2m over a
given region for 12 months. In R console, we can assign few values to a variable called temp,

> temp <- c(29.5,29.8,30.0,31.0,31.2,31.5,30.0,29.8,29.2,28.5,27.0,25.0)

We can get more information about this variable. For instance, to see the length of this time
series, to calculate its mean and variance, type the following commands (and pay attention to
the output):

> length(temp)

> mean(temp)

> var(temp)

Similarly you can apply many built-in functions (like max(), min(), etc) to this time series.
The Cheat Sheet will give you several options 3.

We can also create a sequence of numbers using the command,

> seq(from = 1, to=10, by=1)

which will create the numbers 1 to 10 with an increment of 1. We can also transform the
temp data into a 4 × 3 matrix in R, as follows,

> tempm <- matrix(temp,4,3)

Then, type tempm to see the outcome.

3If your work involves time series, we might consider using an R package called zoo. Here’s an Intro to this
package: https://cran.r-project.org/web/packages/zoo/vignettes/zoo-quickref.pdf Also, this R Time
Series reference page is a wonderful resource for you to learn in details how to use several time series methods in
R: http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/src/timeseries.html

https://cran.r-project.org/web/packages/zoo/vignettes/zoo-quickref.pdf
http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/src/timeseries.html

We can then perform operations, such as addition, to each element of the matrix. For
instance, if we wanted to convert the units of each row and column from Celsius to Kelvin, we
could type the following,

> tempm <- tempm+273.16

Then, type tempm to see the outcome. Also, subtraction, multiplication, and transpose
(as well as other operations) can be performed on the matrix. The transpose of a matrix can
be obtained by typing,

> t(tempm)

If you want to extract a single column of a matrix, just type,

> tempm[,1]

Similarly if we would like to extract the first two columns of a matrix

> tempm[,1:2]

We can also extract the first two rows by typing,

> tempm[1:2,]

Chapter 2

Reading data in R

2.1 Getting started

This tutorial includes the following new R commands (taken from the R Cheat Sheet1):

• library(x) load add-on packages

• read.table(file) reads a file in table format and creates a data frame from it; the default
separator sep = ”” is any whitespace; use header = TRUE to read the first line as a
header of column names; use as.is = TRUE to prevent character vectors from being
converted to factors; use comment.char = ”” to prevent ”#” from being interpreted as
a comment; use skip = n to skip n lines before reading data; see the help for options on
row naming, NA treatment, and others

• colMeans(x) fast version of column means

• max(x) maximum of the elements of x

• min(x) minimum of the elements of x

• sd(x) standard deviation of x

• print(a, ...) prints its arguments; generic, meaning it can have different methods for
different objects

For more information about commands in R, please refer to the cheat sheet and Introduction
to R provided for you in tutorial 0.

1 https://cran.r-project.org/doc/contrib/Short-refcard.pdf

7

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

2.2 Introduction

In this chapter, we will introduce you to opening and reading data files into R. Also, you will
practice opening and generating various file types (in this and other chapters), so that you are
comfortable using as many data formats as possible.

This chapter will introduce you to a very common text (.txt) file of global temperature data.
In chapter 3, you will use this data to generate plots in order to visualize the data. In chapter 4
you will generate arrays of randomized data for 2 cities in order to practice calculating statistical
quantities. At the end of chapter 4, we will challenge you with reading in a new dataset for 2
cities and performing your own analysis on the data using R. Additionally, our optional chapter,
chapter 5, will have a section on reading NetCDF datasets into R, which are very common file
types for climatological data.

For now, lets start this chapter by installing necessary libraries to prepare you for the data
input process.

2.3 How to install, load and unload packages in R

R comes with a few pre-installed packages. But if we would like to use some other functions
(e.g.: a package to create Google Maps in R), we have to install the desired package. The R
community has grown quite a lot in the past few years, and many new packages, to tackle a
wide range of tasks, have been developed. So, it is good to know how to install these packages.
Let’s now start with some basics of package installation and learn how to load and unload them
in R.

Before starting the installation of packages it is always good to find out which packages are
already installed in R. So, if you want to see the packages that are installed on your computer,
just type,

> library()

Now, let’s say you want to install a package that makes it possible for you to read NetCDF
data. This package is called ncdf2. So, to install this package, just type,

> install.packages("ncdf")

After installation is complete, you can load the package by typing,

> library(ncdf)

2There is also a newer version called ncdf4.

If you want to unload a package, just type,

> detach("package:ncdf",unload=TRUE)

2.4 Opening text datasets in R

Now, let us start by opening a global mean temperature dataset in R. This is an example dataset
from National Climate Data Center and could be downloaded from our online course page on
m2lab.org

After you download the data file, you can read it by typing,

> inp <- read.table("globalmean.txt",header=TRUE)

Note that we have created a variable called inp to hold the temperature data. Also, re-
member that if your file is not located in the R working directory, you need to tell R where the
file is located by typing the appropriate path. For instance,

> inp <- read.table("C:\MyDirectoryPath\globalmean.txt",header=TRUE)

Or, if you are using a Mac or Linux computer,

> inp <- read.table("/MyDirectoryPath/globalmean.txt",header=TRUE)

Now, if you want to see what inp looks like, you can type,

head(inp)

This will show you the first few lines of this data set.

m2lab.org

We can now create a seasonal time series of the temperature data you have just read in
R. We can do this by converting the third column of inp into a 12 × 128 matrix, that is, 12
months by 128 years. This will make it easier for us to pick specific months to create seasonal
averages. For example, if we want data for June, July and August (JJA), we would then specify
the columns containing these months.

Let us try to do this exercise ourselves and find out the mean, standard deviation, max and
min value of the JJA time series.

Note that the dataset might contain undefined (or spurious) values and these values should
not be included in the analysis. We will also tell R that such values should not be included in
our analysis. We call these numbers as NA.

So, let’s type the following commands,

Retrieve the temperature values from the file, 3rd column

> temp <- inp[,3]

Matrix creation of yearly data for 128 years

> tempm <- matrix(temp,12,128)

Defining undefined values as NA

> tempm[tempm==-999.0000] <- NA

Creating JJA time series

> tempjja <- tempm[6:8,]

Creating a seasonal mean of JJA series

> temp_jjamn <- colMeans(tempjja,na.rm=TRUE)

These commands will give us a seasonal time series of global surface temperature. We can
now apply some operations to this time series to find out, for example, the maximum, mini-
mum, and standard deviation for the given 128 years starting from 1880 till 2007. So, type the
following now,

Maximum value of the seasonal means

> max(temp_jjamn)

Minimum value of the seasonal means

> min(temp_jjamn)

Standard deviation for the JJA season over 128 years

> sd(temp_jjamn)

Chapter 3

Plotting in R

3.1 Getting started

This tutorial includes the following new R commands (taken from the ”R Cheat Sheet”1):

• summary(a) gives a summary of a, usually a statistical summary but it is generic meaning
it has different operations for different classes of a

• seq(from,to) generates a sequence by = specifies increment; length = specifies desired
length

• plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis)

• points(x, y) adds points (the option type = can be used)

• lines(x, y) adds lines (the option type = can be used)

• legend(x, y, legend) adds the legend at the point (x, y) with the symbols given by legend

• title() adds a title and optionally a sub-title

• hist(x) histogram of the frequencies of x

The following parameters are common to many plotting functions:

• add = FALSE if TRUE superposes the plot on the previous one (if it exists)

• axes = TRUE if FALSE does not draw the axes and the box

• type = ”p” specifies the type of plot, ”p”: points, ”l”: lines, ”b”: points connected by
lines, ”o”: id. but the lines are over the points, ”h”: vertical lines, ”s”: steps, the data
are represented by the top of the vertical lines, ”S”: id. but the data are represented by
the bottom of the vertical lines

• xlim =, ylim = specifies the lower and upper limits of the axes, for example with xlim =
c(1, 10) or xlim = range(x)

• xlab =, ylab = annotates the axes, must be variables of mode character

• main = main title, must be a variable of mode character

• sub = sub-title (written in a smaller font)

For more information about commands in R, please refer to the ”cheat sheet” and ”Intro-
duction to R” provided for you in Tutorial 0.

1 https://cran.r-project.org/doc/contrib/Short-refcard.pdf

11

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

3.2 Introduction

This chapter will use the same global temperature data file you read into R in the previous
chapter. It is important to generate several different plots in order to visualize the data in a
meaningful way. In this chapter, you will generate line plots, bar plots, histograms and scatter
plots. You will also practice adding details to your plots including legends, axis titles, and color.

3.3 Line, Scatter, and Histogram in R

Before starting this section, an important information for plotting in R. When we create a new
plot the previous plot will be overwritten, however one would like to save all the previous graphs
to do a comparison analysis. The useful command for this is x11() for Linux, windows() in
Windows systems and quartz() on Mac computers. In any case if you want to clear your
workspace from all the cluttering then you can use, rm(list=ls()), this command removes all
the variables in the workspace.

Let us again use the same globalmean.txt and plot some temperature analysis. Please, type
the following commands to read in the data and calculate seasonal means (as we did in the
previous Chapter),

> rm(list=ls())

> quartz()

> inp <- read.table("globalmean.txt",header=TRUE)

> temp <- inp[,3]

> tempm <- matrix(temp,12,128)

> tempm[tempm==-999.0000] <- NA

> tempjja <- tempm[6:8,]

> tempjja <-colMeans(tempjja,na.rm=TRUE)

Similarly, let’s create the March-April-May (MAM) series and compare it with the JJA
season. We will also make line plots for the two seasons and do some preliminary assessment.
First, let’s create the MMA series,

> tempmam <- tempm[3:5,]

> tempmam <- colMeans(tempmam,na.rm=TRUE)

Then, we will create a vector containing a sequence of years from 1880 to 2007, which will
be used in our plot. So, let’s type the following,

> year <- seq(1880,2007,by=1)

Now, we are ready to make our first plot,

> plot(year,tempmam,type="l",col="blue",ylab="",xlab="")

The above command plots the first seasonal time series of temperature for MAM as a line
plot in blue. Then, to overlay the JJA time series (in red), we type,

> points(year,tempjja,type="l",col="red",ylab="",xlab"")

If you want a scatterplot, instead of a line plot, then just use type = ”p” in the plotting
commands above. Let us now add a title, labels to the x− and y−axes, and a legend. We can
do this by typing the following commands,

> title(main="Global Mean Temperature in NCDC for JJA and DJF seasons",

xlab="year",ylab="Temperature in deg C",cex=1.5,pch=20)

> legend(’topleft’,’groups’,c("MAM","JJA"),lty=c(1,1),col=c(’blue’,’red’),

ncol=3,bty="n")

Also, if you want a statistical summary of the two time series, you can use the following
commands,

> summary(tempmam)

> summary(tempjja)

Next, let us now make some histogram plots. This is simply done as follows,

> c1=hist(tempmam)

> c2=hist(tempjja)

Chapter 4

Statistics in R

4.1 Getting started

This tutorial includes the following new R commands (taken from the ”R Cheat Sheet”1):

• cor(x) correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)

• lm(formula) fit linear models; formula is typically of the form response termA+termB+...;
use I(x ∗ y) + I(x2) for terms made of nonlinear components

For more information about commands in R, please refer to the ”Cheat sheet” and ”Intro-
duction to R” provided for you in Tutorial 0.

4.2 Introduction

In this section, we will be learning how to calculate a few statistical quantities using R. First, we
will construct some fictitious datasets for you to work with throughout this section. Later on,
you will have the chance to work with some real data. Let’s start by constructing our fictitious
datasets. We will create some temperature data for two cities, which we will call CityA and
CityB, both of which will be normally distributed. So, go ahead and open the R software that
you installed and type the following commands:

1 > s e t . seed (100)
> day = 1:200

3 > CityA = rnorm (200 , 24 . 0 , 10 . 0)
> CityB = rnorm (200 , 15 . 0 , 5 . 0)

In line 1, you noticed that we used the command set.seed(100). This was used so that we
could generate random numbers following a specific seed, which means that if you repeat the
rnorm commands once again, you will get the same result. This also means that the results we
show you in this Tutorial will be the same you will obtain on your computer - because we are
using the same seed. If you do not use a seed, then you will generate different results. Seeds
are useful to use, especially when you want to compare results with others. You can also try
and play with different seed numbers.

In lines 2-4, we then created a time vector from 1 to 200. You can think of it as a vector
of days with length 200 (from day 1 to 200). Then, we generated some normally distributed
data for CityA with size 200, mean temperature of 24.0 degrees Celsius (you can use Fahrenheit
if you prefer) and standard deviation of 10.0 degrees Celsius. For CityB, we used a similar
approach, but with a lower temperature and lower standard deviation.

1 https://cran.r-project.org/doc/contrib/Short-refcard.pdf

15

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

4.3 First look at our data

Now that you have generated some fictitious temperature data for two cities, let’s try to get
some information about our datasets. The following activity will give you the chance to do
that:

Activity 1
When you are analysing some data, it is always good practise to plot your data in order
to get a feeling for what you will be working with. It is also recommended that you get
some general statistics out of it, such as the mean, the maximum, the minimum and other
values. These will help you to better understand your data. First, let’s take a look at the
temperature time series that we created for CityA:

> p lo t (day , CityA , ’ o ’)
2 > summary(CityA)

What is the maximum and minimum temperatures that you obtained for CityA? Do
you think this dataset is realistic? Now, try to do the same for CityB. How are the two
datasets different in terms of their variability?

We hope you enjoyed this short activity. It helped us understand a little bit more about the
data we will be working with. Below, you will find some of our comments on this activity.

Comments on Activity 1
The dataset for CityA has a lot of variability in it. You may have noticed that the maximum
temperature reaches almost about 50 degrees Celsius in a couple of days. This is because
we created these data to have high standard deviation. The reason why we did this, it
is because we wanted to illustrate the idea of outliers in the data. For example, suppose
you received data from a weather station of a certain city. Some of the measurements
may contain errors and it is always a good idea to check these. These errors may be
unrealistically too high or too low - and these are called outliers.

R has a great way to check for outliers and this is through the boxplot tool. When you
make a boxplot in R, if your data contain possible outliers, R will plot these outliers as a
circle in your boxplot. Try the following command and see if you can spot some outliers:

> boxplot (CityA)

We found at least four outliers in the higher end of our boxplot and two in the lower
end. If this was a real research case, you might have to consider whether you should keep
or exclude these points from your data. Sometimes, these points may indicate that there
were some weather extremes for that specific city. If this was the case, then you might
consider keeping these points, since they will provide you with information on extremes.
By the way, did you find any outliers for CityB?

4.4 Correlation

Another aspect you might want to investigate is whether there are correlations between the two
cities. You can check that in R by using the command cor as follows:

1 > cor (CityA , CityB)
> p lo t (CityA , CityB)

After you type these commands, you will see that there is no correlation between them. The
value obtained was around 0.09, which is very low. When you plotted both datasets, you may
have also noticed that there was a poor relationship between them. If you need to determine
the uncertainty in your correlation estimation, you can use the following command:

> cor . t e s t (CityA , CityB)

This will tell you that the p-value obtained is 0.189. When the p-value is higher than 0.005,
it means that your correlation is not significant at the 95% confidence interval. That command
will also show you a confidence interval for your correlation estimation, that is, your correlation
is 0.09 and your confidence interval, which is not significant, goes from -0.05 to 0.23 (to 2
decimal places).

4.5 Linear trends

Let’s now take a look at these data to see if there are any linear trends in them. We do this by
fitting a linear regression model to our dataset. This is very straightforward to do in R:

1 > CityA . lm = lm(CityA ˜ day)
> summary . lm(CityA . lm)

What we have done here is to regress the temperature data against time: y = ax+ b, where
y is our dependent variable (temperature) and x is our explanatory variable (time). If there is
a trend, then the temperature will be dependent on time. a and b represent the slope (trend)
and the intercept (where the trend line crosses the y-axis).

When we summarised our linear model, the p-value given was 0.9519, which was too high.
Since this value was higher than 0.005, this meant that our trend was not significant at the 95%
confidence interval. So, there were no trends for CityA.

Activity 3
Are there any temperature trends in CityB?

Comments on Activity 3
Which p-value did you obtain for your linear model for CityB? Was it higher than 0.05?
Well, we tested CityB and we could not find any trends that were significant at the 95%
confidence level.

Well, let’s create a fictitious trend so that you understand how that works. Try the following
command, please:

> seq (0 , 1 . 99 , 0 . 01)
2 > CityB2 = CityB + 4∗ seq (0 , 1 . 99 , 0 . 01)
> p lo t (day , CityB2 , ’ o ’)

So, what we have done is to add a linear trend to our time series: a trend that is 4 times
0.01 Celsius increase per day. Let’s check what our linear model tells us about this:

1 > CityB2 . lm = lm(CityB2˜day)
> summary . lm(CityB2 . lm)

Well, now our linear model shows a p-value of 0.000000009! This means that this value
is lower than 0.05, and therefore our trend is statistically significant at the 95% confidence
interval! But how much is this trend? Well, we can find out from that summary we got in R.
The summary says that our intercept is 14.88 (to 2 decimal places) and that our slope is 0.04
(to 2 decimal places). Our regression equation is thus: y = 0.04x+ 14.88. This means that our
trend (slope) is of 0.04 degrees Celsius per day. This makes sense, since we added a fictitious
trend of 4*0.01 to our dataset! Let’s plot this trend line:

> p lo t (day , CityB2 , ’ o ’)
2 > l i n e s (0 . 04 ∗day+14.88)

Note that we used our regression equation (shown above) to make the plot. We also used
the command lines, so that the trend line could be added to our existing plot.

Activity 4
We have provided you with observed daily temperature data for 2 cities in the United
States, provided by NOAA. You can download the file on the course website. As your final
assignment for the course, we challenge you to read the data file into R and perform a
variety of analysis on the data until you feel you have learned something interesting about
the dataset. Consider trying to generate one plot and one statistical quantity for the data
at minimum. Report what you learned in our final assessment exercise in the online version
of the course.

Please note: The USA frequently reports their temperature values in fahrenheit rather
than Celsius. You may find it beneficial to convert the temperature values to Celsius using
the formula (◦F − 32) × 5/9 =◦ C

Chapter 5

(Optional) More activities to try

5.1 Introduction

Congratulations on completing the course! Since our goal was to introduce you to R in a short
period of time, we could only cover the basics in Chapters 1 through 4. However, R is a very
powerful tool and there is a lot more you can do! In this chapter, we have provided some
optional ”going further” activities for you to try. If you work with climatological data, this
section introduces you to reading and analyzing NetCDF files, which can be very useful for you.
We have also provided a few links to external websites that show you a couple different options
for creating map plots in R. We hope you find these additional activities useful!

5.2 Working with NetCDF datasets

NetCDF files (network common data form1) are most commonly used in climate research ap-
plications. Most of our present day observations and models are available in this format. Since,
our temperature, rainfall, sea level pressure etc datasets are often array-oriented and have four
dimensions say (x,y,z,t), the NetCDF format makes it easier to handle such data. So, let’s read
a few NetCDF files in this section.

To start with we need to load the netcdf package in R and we also need a netcdf data file
to work with. We can download a sample NetCDF dataset from,

ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_hour_precip/precip.hour.2002.nc

1For more information, visit https://en.wikipedia.org/wiki/NetCDF

19

ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_hour_precip/precip.hour.2002.nc
https://en.wikipedia.org/wiki/NetCDF

The dataset is hourly precipitation gridded and smoothed over the United States from 20N-
60N and 220E-297.5E, similarly we can download other datasets from NOAA. To open these
datasets in R, we need to first load the ncdf package. So, let’s do this now,

Load the NetCDF package

> library(ncdf)\\

Open the file and assigning it to ifile

> ifile <- open.ncdf("precip.hour.2002.nc")

Get information about the input file you’ve just opened

> print(ifile)

Note here that the variable has three dimensions: latitude, longitude and time, and all these
three dimensions can also be viewed as variables in R, similar to other climate visualization
applications. Our next step is to get the variable precip (rainfall) in our working environment
and view the data summary. So, let’s extract the precip variable,

> precip <- get.var.ncdf(ifile,"precip")

Note here the dataset has 33 x 21 (longitude x latitude) points and 6552 time points (i.e.,
from 1 January 2002 to 30 September 2002). The information about the dimension and the
details of the dataset could be obtained by dim(precip). Let us do some simple calculations by
averaging it over the whole US region and analysing the timeseries data.

> prmean <- colMeans(colMeans(precip[,,1:6552],na.rm=TRUE),na.rm=TRUE)

This will calculate the mean over the latitude and longitude dimensions. Note that if we
would like to find the number of undefined values present in the dataset we can check this with,

> any(is.na(precip))

We can check the length(prmean) of the dataset, which should be equal to 6552 time
points. Other operations like mean, max, sd can also provide further information.

http://www.esrl.noaa.gov/psd/data/gridded/

5.3 Autocorrelation

Note: this section is based on the examples and data given in Chapter 4.

Autocorrelation tells you some information about whether there are any correlations within
your dataset. For example, let’s suppose that the temperature today is 20.0 degrees Celsius.
Would you expect the temperature tomorrow to be around the same value? If the weather
conditions do not change much, that would definitely be the case. Now, do you think that the
temperature today could influence the temperature in the next 5 days? How can you measure
that? You can check this through the autocorrelation function.

Activity 2
The autocorrelation function in R is called ”acf” and we can check whether there are
correlations within the data for CityA, by typing the following command:

> ac f (CityA)

If you get a spike that its higher than the blue lines, it means that your data is auto-
correlated (and statistically significant) for that specific day, given in the x-axis. Do you
see any autocorrelations in these data?

The autocorrelation function is also a good way to see whether your data is independent or
not. If there are correlations, it means that your data is dependent. We will come back to this
point later on in our course when we start using climate time series data in Bayesian models.

Comments on Activity 2
You may notice that there is a spike for day 0. This is because if you correlate your CityA
time series with itself for the same days: this will give you a perfect correlation of 1.0. But
when you start correlating it with a lag between the days, then this is what the remaining
of the ACF plot will be telling you.

When we made our ACF plot, we noticed at least three statistically significant spikes:
one in day 1, another in day 9 and another one in day 19.

What about CityB? Do you find any autocorrelations in that dataset?

5.4 Creating maps in R

In this section, we will see how we can plot maps using R. We will be working with an excellent
website where you will learn how to make plots for different parts of the world. This also
includes an interesting R package for you to make Google-like plots!

Before we get started, we need to show you how you can install new packages in R. During
the map Tutorial, you will find commands like this one:

> library(maps)

If you do not have the ”maps” package in your R installation, this means that you will need
to install that specific package. This is not difficult to do in R. For example, to install the
package ”maps,” you would type the following in R:

> install.packages("maps")

You will notice that R will then show you a window with options from where you would like
to download that package from. For example, if I am in Norway, I would choose a location that
is close to Norway. This means that the package download will be faster for me. So, choose a
location that is closer to you. After you choose the location, R will do the installation for you!
You can then test to see if the package was installed by typing:

library(maps)

If the package was installed properly, then you will get no error messages.
Now, visit this website: http://www.molecularecologist.com/2012/09/making-maps-with-r/,

which teaches you how to make plots in R. After you finish studying the website, can you try
to make a map plot of your country or of the region where you are living at the moment?

5.5 Creating maps with Google Maps in R

Now that you have had experience creating maps in R, you can go even further and create plots
using Google Maps. Click here for a link to the tutorial:

http://yarkerconsulting.com/index.php/blog/15-google-maps-and-r

http://www.molecularecologist.com/2012/09/making-maps-with-r/
http://yarkerconsulting.com/index.php/blog/15-google-maps-and-r

	Welcome
	Arithmetics in R
	Getting started
	First encounter with R
	Matrix and Array Manipulation

	Reading data in R
	Getting started
	Introduction
	How to install, load and unload packages in R
	Opening text datasets in R

	Plotting in R
	Getting started
	Introduction
	Line, Scatter, and Histogram in R

	Statistics in R
	Getting started
	Introduction
	First look at our data
	Correlation
	Linear trends

	(Optional) More activities to try
	Introduction
	Working with NetCDF datasets
	Autocorrelation
	Creating maps in R
	Creating maps with Google Maps in R

